三角函数诱导公式_陈臼币同学数学作业《三角函数诱导公式》解题方法_数学_陈臼币

编辑: admin           2017-25-06         

    三角函数诱导公式导读:

    这道数学作业题来自陈臼币同学的作业解题方法分享《三角函数诱导公式》,指导老师是荣老师,涉及到的数学知识点概括为:要所有三角函数诱导公式,同学们可以通过学习三角函数诱导公式:要所有三角函数诱导公式的相关数学知识来提升自己的数学作业解题能力,只有掌握了这些数学知识能力,才能让自己的数学解题能力提升,也才会在数学考试中取得良好的成绩,下面是陈臼币数学作业的详细总结概括分享(本道题以问答模式展开)。

    题目:要所有三角函数诱导公式

    常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限.各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型.(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积.(主要是两条虚线两端的三角函数值的乘积).由此,可得商数关系式.(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方.两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=—————— 1-tanα ·tanβ tanα-tanβtan(α-β)=—————— 1+tanα ·tanβ 倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanαtan2α=————— 1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式) 1-cosαsin^2(α/2)=————— 2 1+cosαcos^2(α/2)=————— 2 1-cosαtan^2(α/2)=————— 1+cosα万能公式⒌万能公式 2tan(α/2)sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2)cosα=—————— 1+tan^2(α/2) 2tan(α/2)tanα=—————— 1-tan^2(α/2)万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))然后用α/2代替α即可.同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.三倍角公式⒍三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα 3tanα-tan^3(α)tan3α=—————— 1-3tan^2(α)三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^2(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角 减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示.和差化积公式⒎三角函数的和差化积公式 α+β α-βsinα+sinβ=2sin—----·cos—--- 2 2 α+β α-βsinα-sinβ=2cos—----·sin—---- 2 2 α+β α-βcosα+cosβ=2cos—-----·cos—----- 2 2 α+β α-βcosα-cosβ=-2sin—-----·sin—----- 2 2积化和差公式⒏三角函数的积化和差公式sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

    三角函数诱导公式:逆火学习站的陈臼币同学的作业题:《要所有三角函数诱导公式》解题思路

    cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

    互助这道作业题的同学还参与了下面的作业题

    题1: 三角函数诱导公式怎么记?三角函数诱导公式好难记得住哦!要怎么样才能更快更好地记住呢?而"奇变偶不变,符号看象限"这句话怎么理解?能不能请大家帮我举些例子说明一下,麻烦写得详细点,[数学科目]

    奇变偶不变

    例:sin(kπ/2+α)中k是奇数的话(如π/2、3π/2、5π/2……)sin就变cos,偶数就不变(如0、π、2π、3π……)同理cos(kπ/2+α)中k是奇数的话(如π/2、3π/2、5π/2……)cos就变sin,偶数就不变(如0、π、2π、3π……)类似的,有tan变cot、cot变tan符号看象限例:sin(π/2+α)=cosα把α看作锐角(第一象限)时,π/2+α是第二象限角,sin(π/2+α)此时是正数因此cosα符号为正cos(π/2+α)=-sinα把α看作锐角(第一象限)时,π/2+α是第二象限角,cos(π/2+α)此时是负数因此sinα符号为负sin(π/2-α)=cosα把α看作锐角(第一象限)时,π/2-α还是第一象限角,sin(π/2-α)此时是正数因此cosα符号为正cos(π/2-α)=sinα把α看作锐角(第一象限)时,π/2-α还是第一象限角,cos(π/2-α)此时是正数因此cosα符号为正全是我自己的经验.

    三角函数诱导公式:逆火学习站的陈臼币同学的作业题:《要所有三角函数诱导公式》解题思路

    终于打完了.累啊.

    题2: 三角函数诱导公式,要全部![数学科目]

    1.诱导公式

    sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)−sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)] cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)] sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的 ) a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2

    三角函数诱导公式:逆火学习站的陈臼币同学的作业题:《要所有三角函数诱导公式》解题思路

    1-sin(a)=(sin(a2)-cos(a2))2

    题3: 求三角函数的诱导公式要全的![数学科目]

    公式一:

    设α为任意角,终边相同的角的同一三角函数的值相等 k是整数  sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系  sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 公式三:任意角α与 -α的三角函数值之间的关系  sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系  sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系  sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系  sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα

    三角函数诱导公式:逆火学习站的陈臼币同学的作业题:《要所有三角函数诱导公式》解题思路

    csc(3π/2-α)=-secα

    题4: 【三角函数中的诱导公式有哪些】[数学科目]

    很高兴为你解答,中学常用的三角函数公式(1) (sinα)²+(cosα)²=1

    (2)1+(tanα)²=(secα)²(3)1+(cotα)²=(cscα)²  正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosα cos(π/2-α) = sinαsin(π/2+α) = cosα cos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosAtan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限

    三角函数诱导公式:逆火学习站的陈臼币同学的作业题:《要所有三角函数诱导公式》解题思路

    不懂的HI我

    题5: 【三角函数诱导公式Sin(A+B)=?COS(A+B)=?TAN(A+B)=?COT(A+B)=?】[数学科目]

    常用的诱导公式有以下几组:

    公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号. (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα. 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”. 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限. 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限. 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 其他三角函数知识: 同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型. (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积. (主要是两条虚线两端的三角函数值的乘积).由此,可得商数关系式. (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方. 两角和差公式 ⒉两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 倍角公式 ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanα tan2α=————— 1-tan^2(α) 半角公式 ⒋半角的正弦、余弦和正切公式(降幂扩角公式) 1-cosα sin^2(α/2)=————— 2 1+cosα cos^2(α/2)=————— 2 1-cosα tan^2(α/2)=————— 1+cosα 万能公式 ⒌万能公式 2tan(α/2) sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α)) 然后用α/2代替α即可. 同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到. 三倍角公式 ⒍三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 3tanα-tan^3(α) tan3α=—————— 1-3tan^2(α) 三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 三倍角公式联想记忆 记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”) ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示. 和差化积公式 ⒎三角函数的和差化积公式 α+β α-β sinα+sinβ=2sin—----·cos—--- 2 2 α+β α-β sinα-sinβ=2cos—----·sin—---- 2 2 α+β α-β cosα+cosβ=2cos—-----·cos—----- 2 2 α+β α-β cosα-cosβ=-2sin—-----·sin—----- 2 2 积化和差公式 ⒏三角函数的积化和差公式 sinα ·cosβ=0.5[sin(α+β)+sin(α-β)] cosα ·sinβ=0.5[sin(α+β)-sin(α-β)] cosα ·cosβ=0.5[cos(α+β)+cos(α-β)] sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)] 和差化积公式推导 附推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

    三角函数诱导公式:逆火学习站(img1.72589.com)的陈臼币同学的作业题:《要所有三角函数诱导公式》解题思路

    三角函数诱导公式小结:

    通过以上关于陈臼币同学对三角函数诱导公式:要所有三角函数诱导公式的概括总结详细分享,相信同学们已经对三角函数诱导公式的相关数学作业知识一定有所收获吧。建议同学们要学会归纳总结,仔细揣摩陈臼币同学分享的解答《要所有三角函数诱导公式》这道作业题的重点部分,他山之石,可以攻玉,考才获胜。

  •   4
  • 相关文章

    一公分等于几厘米
    一吨等于多少立方米
    消费税计算公式
    立方米和吨的换算
    函数的值域
    10公分等于多少厘米
    1公斤等于多少千克
    数学的由来
    一元一次方程计算题
    金条多少克
Copyright ©2009-2021 逆火网训All Rights Reserved.     滇ICP备2023009294号-57