数学家与函数_蒯搜氖同学数学作业《数学家与函数》解题方法_数学_蒯搜氖
编辑: admin 2017-25-06
-
4
数学家与函数导读:
这道数学作业题来自蒯搜氖同学的作业解题方法分享《数学家与函数》,指导老师是傅老师,涉及到的数学知识点概括为:哪些数学家与函数有关的啊?,同学们可以通过学习数学家与函数:哪些数学家与函数有关的啊?的相关数学知识来提升自己的数学作业解题能力,只有掌握了这些数学知识能力,才能让自己的数学解题能力提升,也才会在数学考试中取得良好的成绩,下面是蒯搜氖数学作业的详细总结概括分享(本道题以问答模式展开)。
题目:哪些数学家与函数有关的啊?
数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.最初莱布尼茨用“函数”一词表示幂.以后,他又用函数表示在直角坐标系中曲线上一点的横坐标、纵坐标.1718年,莱布尼茨的学生约翰·贝努利(BernoulliJohann,瑞士,1667-1748) 在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:“由某个变量及任意的一个常数结合而成的数量.”意思是凡变量x和常量构成的式子都叫做x的函数,他强调函数要用公式来表示.x0d1755年,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”并给出了沿用至今的函数符号 .x0d1821年,柯西(Cauchy,法国,1789-1857) 给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数.” 在柯西的定义中,首先出现了自变量一词.x0d1822年傅里叶(Fourier,法国,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次.x0d1837年狄利克雷(Dirichlet,德国,1805-1859) 认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数.”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.x0d等到康托尔(Cantor,德,1845-1918)创立的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了.x0d中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的.x0d中国古代“函”字与“含”字通用,都有着“包含”的意思.李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思.互助这道作业题的同学还参与了下面的作业题
题1: 哪些数学家与函数有关的啊?
十七世纪伽俐略(G.Galileo,意大利,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的.题2: 数学家和函数的知识要相关内容知识.[数学科目]
早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. 当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”. 18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三)函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究. 后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由三角函数表示出,其中富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍. 通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义. 1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分. 1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.” 根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数): f(x)= 1 (x为有理数), 0 (x为无理数). 在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数. 狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四)生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数, 即ρ(x)= 0,x≠0, ∞,x=0. 且δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是P(0)=压力/接触面=1/0=∞. 其余点x≠0处,因无压力,故无压强,即 P(x)=0.另外,我们知道压强函数的积分等于压力,即 函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元. 函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系. 函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”. 设集合X、Y,我们定义X与Y的积集X×Y为X×Y={(x,y)|x∈X,y∈Y}. 积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系. 现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了. 从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要. 三角函数是数学中属于初等函数中的超越函数的一类函数.它们的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.另一种定义是在直角三角形中,但并不完全.现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系. 由于三角函数的周期性,它并不具有单值函数意义上的反函数. 三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具. 基本初等内容 它有六种基本函数(初等基本表示): 函数名 正弦 余弦 正切 余切 正割 余割数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
希望采纳题3: 【有谁能帮我找一下有关中国数学家与函数的故事】[数学科目]
中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
中国古代“函”字与“含”字通用,都有着“包含”的意思.李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思.题4: 数学家与函数的故事
安德烈·韦伊(André Weil)(1906年5月6日-1998年8月6日),数学家,Bourbaki小组创办者之一.他是哲学家西蒙娜·韦伊的兄长.韦伊生于巴黎,于巴黎、罗马和哥廷根学习,1928年获博士学位.二战后韦伊往美国,在芝加哥大学任教,然后在普林斯顿高等研究院安定下来.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
他在许多领域都作出实质的贡献,最重要的要算是代数几何和数论的深刻连系.他的成就有数个韦伊猜想(后来由伯纳德·德沃克、亚历山大·格罗登迪克和皮埃尔·德利涅证出)和函数域的黎曼猜想.他又为代数几何建立良好基础,并发现了韦伊表示,之前Segal和Shale也把它引入量子力学,它为理解二次型的经典理论给了良好框架.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
韦伊懂得欧洲多国语言,他采用挪威语字母代表空集.他也有深刻造诣于数学史,这从Bourbaki的《数学史》可以看得出来.Bourbaki出版《数学史》是他提出的.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
韦伊在1979年获得沃尔夫数学奖,翌年获得斯蒂尔奖,1994年获得京都基础科学赏.题5: 1函数产生的历史背景2函数的发展历程3与函数有关的数学家[数学科目]
1.1 早期函数概念——几何观念下的函数数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的.1.2 十八世纪函数概念——代数观念下的函数数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号.欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式.他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义.1.3 十九世纪函数概念——对应关系下的函数数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次.1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数.”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等).1.4 现代函数概念——集合论下的函数数学家与函数:逆火学习站的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数.其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”.库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了.1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.数学家与函数:逆火学习站(img1.72589.com)的蒯搜氖同学的作业题:《哪些数学家与函数有关的啊?》解题思路
数学家与函数小结:
通过以上关于蒯搜氖同学对数学家与函数:哪些数学家与函数有关的啊?的概括总结详细分享,相信同学们已经对数学家与函数的相关数学作业知识一定有所收获吧。建议同学们要学会归纳总结,仔细揣摩蒯搜氖同学分享的解答《哪些数学家与函数有关的啊?》这道作业题的重点部分,他山之石,可以攻玉,考才获胜。