【2sinπx】∫(x^2)sinπxdx_数学_迷恋0152
编辑: admin 2017-15-06
-
4
∫(x^2)sinπxdx
=1/π∫x2sinπxd(πx)
=-1/π∫x2dcosπx
=-1/πx2cosπx+1/π∫cosπxdx2
=-1/πx2cosπx+2/π2∫xcosπxdπx
=-1/πx2cosπx+2/π2∫xdsinπx
=-1/π*x2cosπx+2/π2*xsinπx-2/π2∫sinπxdx
=-1/π*x2cosπx+2/π2*xsinπx-2/π3*cosπx+C
互助这道作业题的同学还参与了下面的作业题
题1: 微积分sin^2xdx==?[数学科目]
sin^2 xdx=1/2×(1-cos(2x))dx=1/2×dx-1/4×cos(2x)d(2x)=d(x/2)-1/4×dsin(2x)=d[1/2×x-1/4×sin(2x)+C],C是任意常数
题2: 【求微积分∫sin^2(x)cos^4(x)dx】[数学科目]
sin^2(x)cos^4(x)
=1/4*sin²2xcos²x
=1/4*(1-cos4x)/2*(1+cos2x)/2
=1/16*(1+cos2x-cos4x-cos2xcos4x)
=1/16*(1+cos2x-cos4x-cos2xcos4x)
=1/16*[1+cos2x-cos4x-1/2*(cos3x+cos6x)]
=1/16+1/16*cos2x-1/16*cos4x-1/32*cos3x-1/32*cos6x
所以原式=∫dx/16+1/16*∫cos2xdx-1/16*∫cos4xdx-1/32*∫cos3xdx-1/32*∫cos6xdx
=x/16+1/32*∫cos2xd2x-1/64*∫cos4xd4x-1/96*∫cos3xd3x-1/192*∫cos6xd6x
=x/16+1/32*sin2x-1/64*sin4x-1/96*sin3x-1/192*sin6x+C
题3: 设sin(x^2+y)=x,求隐函数y的微积分dy[数学科目]
两边同时对x微分得dcos(x^2+y)=dx,即-sin(x^2+y)(2dx+dy)=dx,将dy移过去,变形得到-(1+2sin(x^2+y))dx/sin(x^2+y)=dy
题4: sin(x^2+y^2)对x积分.[数学科目]
如下
题5: 【∫sin^2√x/√xdx】[数学科目]
∫sin^2√x/√xdx
=∫(1-cos2√x)/2√xdx
=∫(1-cos2√x)(-d√x)
=-√x+sin2√x)/2+C