证明高斯面电势平均值等于球心电势证明在一个假象的..

编辑: admin           2017-23-02         

    给一个证明,会涉及到积分和求导符号,不知道能看懂不.

    设有一个球面,设其半径为R,球心为坐标原点.下面会把电势随空间的分布用球坐标表示:V(r,theta,phi).球心的电势即V(r=0),球面上的电势为V(r=R,theta,phi).

    因为这个球面中不包含电荷,所以穿过这个球面的电通量为零(高斯定理),并根据电场是电势的导数,而电场在球面法向上的分量是电势V对r的偏导(\p V)/(\p r)【这里的\p代表偏导符号】.于是得到积分:\int (\p V)/(\p r) dA=0.【这个式子里的\int代表对球面积分,dA是球面的面积微元,即dA=R^2 sin(theta) d_theta d_phi】.继续将方程两面除以R^2,得到\int (\p V)/(\p r) d_Omega=0.这里d_Omega是立体角微元d_Omega=sin(theta) d_theta d_phi.

    注意上面这个方程不仅仅在半径为R的球面上成立,而是对于所有r

    提示:

    1.球内无电荷,电力线起于正电荷终于负电荷,所以等势面上每个对应电力线进入的点都对应着电力线穿出的点。

    2.垂直电力线移动(电荷),不做功。沿电力线向高向低做功大小相等符号相反。

    3.电力线不交叉,于是可以取垂直电力线路经移动到电力线上。

    4.对球面上的点,如果没有电力线经过,则它们和球心都是等势的,因为没有延电力线移动。

    5.对有电力线经过的情况,按照一条电力线穿...

    类似问题

    类似问题1:高斯等差数列球和公式是不是高斯发现的?首项加末项乘以项数除以二等于等差数列所有数之和,这一公式是不是高斯小时候发现的?还是这个公式本来就有,只不过是高斯当年用了一下被传为佳[语文科目]

    (首项+末项)*项数/2

    高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭.父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子.迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子.父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生.高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就.

    在成长过程中,幼年的高斯主要是力于母亲和舅舅.高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich).弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就.他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力.若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使我们失去了一位天才.正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.

    在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲.罗捷雅直到34岁才出嫁,生下高斯时已有35岁了.他性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围.当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.

    罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视.然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中.在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolya,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是欧洲最伟大的数学家,为此她激动得热泪盈眶.

    7岁那年,高斯第一次上学了.头两年没有什么特殊的事情.1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程.数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用.

    在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案.不过,这很可能是一个不真实的传说.据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899.

    当然,这也是一个等差数列的求和问题(公差为198,项数为100).当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去.E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了.高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题.数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法.一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常.贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的.而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点.

    高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看.他特意从汉堡买了最好的算术书送给高斯,说:你已经超过了我,我没有什么东西可以教你了.接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世.他们一起学习,互相帮助,高斯由此开始了真正的数学研究.

    1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出.经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯.这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习.

    布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用.不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一.高斯正处于私人资助科学研究与科学研究社会化的转变时期.

    1792年,高斯进入布伦兹维克的卡罗琳学院继续学习.1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究.1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时—虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他.公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用.所有这一切,令高斯十分感动.他在博士论文和《算术研究》中,写下了情真意切的献词:献给大公,你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究.

    1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击.他悲痛欲绝,长时间对法国人有一种深深的敌意.大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸.人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态.在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:对我来说,死去也比这样的生活更好受些.

    慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计.由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲.彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才.公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台.现在,高斯又在他的生活中面临着新的选择.

    为了不使德国失去最伟大的天才,德国著名学者洪堡(B.a.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位.1807年,高斯赴哥丁根就职,全家迁居于此.从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根.洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件.同时,这也标志着科学研究社会化的一个良好开端.

    高斯的学术地位,历来为人们推崇得很高.他有数学王子数学家之王的美称、被认为是人类有史以来最伟大的三位(或四位)数学家之一(阿基米德、牛顿、高斯或加上欧拉).人们还称赞高斯是人类的骄傲.天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份.

    高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹.从研究风格、方法乃至所取得的具体成就方面,他都是18—19世纪之交的中坚人物.如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯.

    虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究.随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高.作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师.

    1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问.

    高斯的一生,是典型的学者的一生.他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家.他先后结过两次婚,几个孩子曾使他颇为恼火.不过,这些对他的科学创造影响不太大.在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程.

    类似问题2:证明均匀带电球壳内任意点处处电势相等[物理科目]

    首先你需要知道某点电荷对空间中一点的力与两者距离的平方成反比,与点电荷电量成正比.然后,我们在带电球壳内任取一点S,画一条过此点的直线,那么,那条直线会与球壳交于两点.接下来,再画一条直线,使该直线与原来的直线的夹角为a,a趋近于0,设这种直线为直线B.那么,所有的直线B所围成的轮廓,因为a极小,可以近似为两个圆锥,顶点都在S上,若直线不为球的半径,那么两个圆锥必定一大一小.设大圆锥到S的距离为p,小圆锥到S的距离为q,由相似可知,大圆锥的底面面积是小圆锥地面面积的p2/q2倍,即电量也是那么多倍.所以,大圆锥与小圆锥对S的力大小相等,方向相反.由于这个圆锥模型可以遍布以S为中心的所有立体角,因此最后累加起来可知球壳对S根本没有力的作用,所以S可以不用做功的情况下自由在球壳中移动,即球壳内的电势均相等

    类似问题3:高斯面球对称时,E 在高斯面上是常量,这是为什么?[数学科目]

    取了高斯面之后,E的值只于其中包含的电荷大小有关

    类似问题4:如何验证混合高斯分布[数学科目]

    这个是由中心极限定理证明的,可以严格的证明N(N接近无穷大)个随即变量的分布符合高斯分布啊.大多数的分布极限状态都是高斯分布.

    即使对连续型的分布,我们也是通过样本来对他研究,大量的样本,你可以看做是一个离散的分布,得出把这个分布写出来就是经验分布函数,当样本容量无限大的时候,经验分布无限趋近原来的那个连续分布,这样应该可以理解吧

    类似问题5:两个“无限大”均匀带“相同电”平面内部电场是否为0?(是不是在内部做高斯面来证明?)[物理科目]

    为零,这是因为我们认为达到静电平衡的导体内部并不存在电荷,只会分布在导体表面,这样我们可以直接得到内部电场为零的结论,其实也可以说是高斯定理吧,因为“无源”.

  •   4
  • 相关文章

    专利代理人资格考试
    初级经济师考试
    执业医师考试
    教师资格证考试
    同等学力申硕考试
    AP考试
    CCIE考试
    营养师考试
    bec考试
    gre
Copyright ©2009-2021 逆火网训All Rights Reserved.     滇ICP备2023009294号-57