小学六上数学中国体育彩票七位数玩法规定:投注号码为.

编辑: admin           2017-23-02         

    5*1/10^2=5/10000000=1/2000000

    即二百万分之一

    因为每一位上有十种可能所以按乘法原理:奖号有10*10*10*10*10*10*10=10^7

    而中特等只有一种可能,即中特奖中奖率为1/10^7,而买五张,所以中奖率为5/10^7,即二百万分之一

    提示:

    5/10000000=1/2000000

    类似问题

    类似问题1:求数学高手解答,小学六上数学 [数学科目]

    假设全是正面朝上

    15*10=150步 150-100=50步 15+10=25步 反面50除25=2次 正面10-2=8次

    类似问题2:没填的空,全部 [数学科目]

    (3)六年级1班70%的同学达到了优秀

    (4)25%,3:1

    (5)90%

    甲堆水泥,乙,甲堆,120

    (1)不对

    类似问题3:3个判断题 3个填空题 关于位置的 被老师所迫 被生活所迫[数学科目]

    1、(3,2)和(2,3)表示的同一个位置( )

    2,数对的第一个数字表示列,第二个数字表示行.( )

    3、小明做在(3,4)他前面的同学是(4,4)( )

    1、(5,6) 表示第( )列第( )行

    2、(5,6)前面同学是( )

    3、数对是由()个数字组成

    类似问题4:写你对数学有哪些进步?计划完成的怎么样?[数学科目]

    今天,我们一家去龙港的肯德基去吃全家套餐.

    到了那儿,人一直挤着,我们好不容易点好菜,就找到位子坐下.菜来了,是一桶大套餐.里面有12个鸡腿,我想:怎么平均分呢?这时,我想起除法12÷3=4.我们每人四个鸡腿,我后来又吃了老妈的1个鸡腿,阿姨的2个鸡腿,阿姨说:“这总不能白吃,我问你,你吃了几分之几?你再吃几份就全吃了?“我想了想,回答:“我吃了7/12,再吃5/12就全吃了.”幸好,我学了分数的知识,可以正确回答问题了.

    类似问题5:这个学期就要考初中了.和我意的会追加越多越好[数学科目]

    小学1-6年级数学概念、公式

    1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数

    2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数

    3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

    4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

    5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

    6、 加数+加数=和 和-一个加数=另一个加数

    7、 被减数-减数=差 被减数-差=减数 差+减数=被减数

    8、 因数×因数=积 积÷一个因数=另一个因数

    9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

    小学数学图形计算公式

    1 、正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a

    2 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a

    3 、长方形

    c周长 s面积 a边长

    周长=(长+宽)×2

    c=2(a+b)

    面积=长×宽

    s=ab

    4 、长方体

    v:体积 s:面积 a:长 b: 宽 h:高

    (1)表面积(长×宽+长×高+宽×高)×2

    s=2(ab+ah+bh)

    (2)体积=长×宽×高

    v=abh

    5 三角形

    s面积 a底 h高

    面积=底×高÷2

    s=ah÷2

    三角形高=面积 ×2÷底

    三角形底=面积 ×2÷高

    6 平行四边形

    s面积 a底 h高

    面积=底×高

    s=ah

    7 梯形

    s面积 a上底 b下底 h高

    面积=(上底+下底)×高÷2

    s=(a+b)× h÷2

    8 圆形

    s面积 c周长 ∏ d=直径 r=半径

    (1)周长=直径×∏=2×∏×半径

    c=∏d=2∏r

    (2)面积=半径×半径×∏

    9 圆柱体

    v:体积 h:高 s;底面积 r:底面半径 c:底面周长

    (1)侧面积=底面周长×高

    (2)表面积=侧面积+底面积×2

    (3)体积=底面积×高

    (4)体积=侧面积÷2×半径

    10 圆锥体

    v:体积 h:高 s;底面积 r:底面半径

    体积=底面积×高÷3

    总数÷总份数=平均数

    和差问题的公式

    (和+差)÷2=大数

    (和-差)÷2=小数

    和倍问题

    和÷(倍数-1)=小数

    小数×倍数=大数

    (或者 和-小数=大数)

    差倍问题

    差÷(倍数-1)=小数

    小数×倍数=大数

    (或 小数+差=大数)

    植树问题

    1 非封闭线路上的植树问题主要可分为以下三种情形:

    ⑴如果在非封闭线路的两端都要植树,那么:

    株数=段数+1=全长÷株距-1

    全长=株距×(株数-1)

    株距=全长÷(株数-1)

    ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

    株数=段数=全长÷株距

    全长=株距×株数

    株距=全长÷株数

    ⑶如果在非封闭线路的两端都不要植树,那么:

    株数=段数-1=全长÷株距-1

    全长=株距×(株数+1)

    株距=全长÷(株数+1)

    2 封闭线路上的植树问题的数量关系如下

    株数=段数=全长÷株距

    全长=株距×株数

    株距=全长÷株数

    盈亏问题

    (盈+亏)÷两次分配量之差=参加分配的份数

    (大盈-小盈)÷两次分配量之差=参加分配的份数

    (大亏-小亏)÷两次分配量之差=参加分配的份数

    相遇问题

    相遇路程=速度和×相遇时间

    相遇时间=相遇路程÷速度和

    速度和=相遇路程÷相遇时间

    追及问题

    追及距离=速度差×追及时间

    追及时间=追及距离÷速度差

    速度差=追及距离÷追及时间

    流水问题

    顺流速度=静水速度+水流速度

    逆流速度=静水速度-水流速度

    静水速度=(顺流速度+逆流速度)÷2

    水流速度=(顺流速度-逆流速度)÷2

    浓度问题

    溶质的重量+溶剂的重量=溶液的重量

    溶质的重量÷溶液的重量×100=浓度

    溶液的重量×浓度=溶质的重量

    溶质的重量÷浓度=溶液的重量

    利润与折扣问题

    利润=售出价-成本

    利润率=利润÷成本×100=(售出价÷成本-1)×100

    涨跌金额=本金×涨跌百分比

    折扣=实际售价÷原售价×100(折扣<1)

    利息=本金×利率×时间

    税后利息=本金×利率×时间×(1-20)

    长度单位换算

    1千米=1000米 1米=10分米

    1分米=10厘米 1米=100厘米

    1厘米=10毫米

    面积单位换算

    1平方千米=100公顷

    1公顷=10000平方米

    1平方米=100平方分米

    1平方分米=100平方厘米

    1平方厘米=100平方毫米

    体(容)积单位换算

    1立方米=1000立方分米

    1立方分米=1000立方厘米

    1立方分米=1升

    1立方厘米=1毫升

    1立方米=1000升

    重量单位换算

    1吨=1000 千克

    1千克=1000克

    1千克=1公斤

    人民币单位换算

    1元=10角

    1角=10分

    1元=100分

    时间单位换算

    1世纪=100年 1年=12月

    大月(31天)有:1\3\5\7\8\10\12月

    小月(30天)的有:4\6\9\11月

    平年2月28天, 闰年2月29天

    平年全年365天, 闰年全年366天

    1日=24小时 1时=60分

    1分=60秒 1时=3600秒

    小学数学几何计算公式

    1、长方形的周长=(长+宽)×2 c=(a+b)×2

    2、正方形的周长=边长×4 c=4a

    3、长方形的面积=长×宽 s=ab

    4、正方形的面积=边长×边长 s=a.a= a

    5、三角形的面积=底×高÷2 s=ah÷2

    6、平行四边形的面积=底×高 s=ah

    7、梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2

    8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

    9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

    10、圆的面积=圆周率×半径×半径

    21

    一、 整数和小数

    1.最小的一位数是1,最小的自然数是0

    2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份 或几份分别是十分之几、百分之几、千分之几……可以用小数来表示.

    3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

    4.小数的分类:小数 有限小数

    无限小数 无限循环小数

    无限不循环小数

    5.整数和小数都是按照十进制计数法写出的数.阿

    6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变.

    7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

    小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

    一. 数的整除

    1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a.

    2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数.

    3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

    一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身.

    4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数.

    5.按一个数约数的个数,非0自然数可分为1、质数、合数三类.

    质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数.质数都有2个约数.

    合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.合数至少有3个约数.

    最小的质数是2,最小的合数是4

    1~20以内的质数有:2、3、5、7、11、13、17、19

    1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

    6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除.

    能被5整除的数的特征:个位上是0或者5的数,都能被5整除.

    能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除.

    7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数.

    8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.

    9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.

    几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数.

    10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数.

    11.互质数:公约数只有1的两个数叫做互质数.

    12.两数之积等于最小公倍数和最大公约数的积.

    三.四则运算

    1.一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差

    一个因数=积÷另一个因数 被除数=商×除数 除数=被除数÷商

    2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算.

    3.运算定律:

    (1)加法交换律:a+b=b+a 乘法交换律:a×b=b×a

    两个数相加,交换加数的位置,它们的和不变.

    两个数相加,交换因数的位置,它们的积不变.

    (2)加法结合律:(a+b)+c=a+(b+c) 乘法结合律:(a×b)×c=a×(b×c)

    三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.

    三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变.

    (3)乘法分配律:(a+b)×c=a×c+b×c

    两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.

    (4)减法的性质:a-b-c=a-(b+c) 除法的性质:a÷b÷c=a÷(b×c)

    从一个数里连续减去两个数,等于从这个数里减去两个减数的和.

    一个数连续除以两个数,等于这个数除以两个除数的积.

    四.关系式

    1.速度×时间=路程 路程÷时间=速度 路程÷速度=时间

    工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

    单价×数量=总价 总价÷数量=单价 总价÷单价=数量

    五.方程

    1.方程:含有未知数的等式叫做方程.

    2.方程的使方程左右两边相等的未知数的值,叫做方程的解.

    3.解方程:求方程解的过程叫做解方程.

    六.分数和百分数

    1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.

    2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位.

    3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数.

    分数和小数的联系:小数实际上就是分母是10、100、1000……的分数.

    分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项

    4.分数的分类:分数可以分为真分数和假分数.

    5.真分数:分子小于分母的分数叫做真分数.真分数小于1.

    假分数:分子大于或等于分母的分数叫做假分数.假分数大于或者等于1.

    6.最简分数:分子与分母互质的分数叫做最简分数.

    7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变.

    8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数.

    9.百分数:表示一个数是另一个数的百分之几的数叫做百分数.百分数也叫做百分率或者百分比.百分数通常用“%”来表示.

    七.量的计量

    1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率

    面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率.

    体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率.

    质量单位有:吨、千克、克,写出它们之间的进率.

    时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率.

    2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天.

    小月有:4、6、9、11月,共4个,每月30天.

    二月平年是28天,闰年是29天.

    左拳记月法

    3.一年有4个季度,每个季度3个月.

    4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年.

    5.名数:把计量得到的数和单位名称合起来叫做名数.

    单名数:只带有一个单位名称的叫做单名数.

    复名数:带有两个或两个以上单位名称的叫做复名数.

    6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率.

    八.几何初步知识

    1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长.射线和直线是无限长的.

    2.角:从一点引出两条射线所组成的图形叫做角.

    3.角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大.

    4.计量角的大小的单位:度,用符号“°”表示.

    5.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角.角的两边在一条直线上的角叫做平角.平角180°.

    6.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足.(画图说明)

    7.平行线:在同一平面内不相交的两条直线叫做平行线.也可以说这两条直线互相平行.

    (画图说)平行线之间垂直线段的长度都相等.

    8.三角形:有三条线段围成的图形叫做三角形.

    9.三角形的分类:

    (1)按角分:锐角三角形、钝角三角形、直角三角形.

    (2)按边分:一般三角形、等腰三角形、等边三角形.

    10.三角形三个内角和是180°.

    11.四边形:由四条线段围成的图形.

    12.圆是一种曲线图形.圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长.

    13.圆的半径、直径都有无数条.在同一个圆里,直径是半径的2倍,半径是直径的二分之一.

    14.轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.

    15.学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形

    16.周长:围成一个图形的所有边长的总和就是这个图形的周长.

    面积:物体的表面或围成的平面图形的大小,叫做它们的面积.

    17.表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积.

    体积:物体所占空间的大小叫做物体的体积.

    18.长方体、正方体都有12条棱,6个面,8个顶点.

    正方体是特殊的长方体,等边三角形是特殊的等腰三角形.

    19.圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆

    20.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高.圆柱的高有无数条,这些高都平行且相等.

    21.把圆柱的侧面,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高.

    22.圆周率π是一个无限不循环小数.π=3.141592653……

    23.把圆等份成若干份,拼成的图形接近于长方形.这个长方形的长相当于圆周长的一半,宽就是圆的半径.

    24.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高.

    25.等底等高的圆锥的体积是圆柱的 ,等底等高的圆柱的体积是圆锥的三倍.

    体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的 ,圆锥的高是圆柱的3倍.

    九.比和比例

    1.比的意义:两个数相除又叫做两个数的比.

    比例的意义:表示两个比相等的式子叫做比例.

    2.求比值:比的前项除以比的后项所得的商叫做比值.

    3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变.

    比例的基本性质:在比例里,两个外项的积等于两个内项的积.

    4.应用比的基本性质可以化简比;

    应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例.

    5.用字母表示比与除法和分数的关系.

    a:b=a÷b= (b≠0)

    6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺.

    7.图上距离:实际距离=比例尺

    或 =比例尺

    实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺

    8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数.
    化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比.

    9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系.

    用式子表示: =k(一定),用图表示正比例关系是一条直线.

    10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系.

    用式子表示:x×y=k(一定),用图表示反比例关系是一条曲线.

    十.简单的统计

    1.常见的统计图有条形统计图、折线统计图和扇形统计图.

    2.条形统计图特点:(1)用一个单位长度表示一定的数量.(2)用直条的长短来表示数量的多少. 作用:从图中能清楚地看出各数量的多少,便于相互比较.

    折线统计图的特点:(1)用一个单位长度表示一定的数量.(2)用折线的起伏来表示数量的增减变化. 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少.

    十一 公式的整理

    平面图形:

    1.长方形:

    周长=(长+宽)×2 C长=(a+b)×2

    面积=长×宽 S长=a ×b

    2.正方形:

    周长=边长×4 C正=a×4

    面积=边长×边长 S正=a×a

    3.平行四边形的面积=底×高 S平=ah

    4.三角形的面积=底×高÷2 S三=ah÷2

    5.梯形的面积=(上底+下底)×高÷2 S梯=(a+b)×h÷2

    6.圆的周长=直径×3.14 C圆=πd

    圆的周长=半径×2×3.14 C圆=2πr

    圆的面积=半径的平方×圆周率 S圆=πr2

    立体图形:

    1.长方体

    表面积=(长×宽+长×高+宽×高)×2 S长表=(ab+ah+bh)×2

    体积=长×宽×高 V长=abh

    2.正方体

    表面积=棱长×棱长×6 S正表=a×a×6

    体积=棱长×棱长×棱长 V正=a3

    3.圆柱

    侧面积=底面周长×高

    表面积=侧面积+两个底面积

    体积=底面积×高

    4.以上立体图形的表面积、体积可以统一成公式为:

    表面积=底面周长×高+两个底面积 体积=底面积×高

    侧面积

    5.圆锥的体积=圆柱的体积÷3 V=sh÷3

  •   4
  • 相关文章

    专利代理人资格考试
    初级经济师考试
    执业医师考试
    教师资格证考试
    同等学力申硕考试
    AP考试
    CCIE考试
    营养师考试
    bec考试
    gre
Copyright ©2009-2021 逆火网训All Rights Reserved.     滇ICP备2023009294号-57