选调生数学题求答案和详细解释雪灾停电期间,小华家买.

编辑: admin           2017-23-02         

    我也考过选调生所以比较感兴趣呵呵

    首先我的答案是A 9:8 不知道对不对 而且想的有点麻烦 欢迎大家来讨论

    答案首先前提是2支蜡烛质地相同的 也就是相同的原料制作的不同外形的蜡烛

    燃烧掉半个小时 体积为大蜡烛剩3/4 小蜡烛剩2/3,底面积不变,也就是长度是原来的3/4和2/3时,高度相同,比例一比就出来了,3/4比2/3,答案9:8

    类似问题

    类似问题1:已知Pi(i=1,2,3,4)是抛物线y=x2+bx+1上共圆的四点,它们的横坐标分别为xi(i=1,2,3,4),又i=(1,2,3,4)是方程(x2-4x+m)(x2-4x+n)=0的根,则二次函数y=x2+bx+1的最小值是()A. -1 B. -2 C. -3 D. -4[数学科目]

    抛物线与圆的四个交点,上下两组点的连线的中点位于抛物线的对称轴上

    所以由(x2-4x+m)(x2-4x+n)=0可知,该抛物线的对称轴为x=2

    则b=-4

    所以最小值为-3

    类似问题2:----有网站最好哦

    初一奥数复习题

    初一奥数复习题

    作者:佚名 文章来源:初中数学竞赛辅导 点击数:1005 更新时间:2006-2-4

    2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

    3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.

    4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

    5.已知方程组

    有解,求k的值.

    6.解方程2|x+1|+|x-3|=6.

    7.解方程组

    8.解不等式||x+3|-|x-1||>2.

    9.比较下面两个数的大小:

    10.x,y,z均是非负实数,且满足:

    x+3y+2z=3,3x+3y+z=4,

    求u=3x-2y+4z的最大值与最小值.

    11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

    19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.

    20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

    21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

    22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有

    23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

    24.求不定方程49x-56y+14z=35的整数解.

    25.男、女各8人跳集体舞.

    (1)如果男女分站两列;

    (2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.

    问各有多少种不同情况?

    26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?

    27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.

    28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?

    29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.

    30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?

    31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?

    32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?

    33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?

    34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?

    35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.

    (1)试用新合金中第一种合金的重量表示第二种合金的重量;

    (2)求新合金中含第二种合金的重量范围;

    (3)求新合金中含锰的重量范围.

    2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

    原式=-b+(a+b)-(c-b)-(a-c)=b.

    3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

    |x+m|+|x-n|=x+m-x+n=m+n.

    4.分别令x=1,x=-1,代入已知等式中,得

    a0+a2+a4+a6=-8128.

    5.②+③整理得

    x=-6y, ④

    ④代入①得 (k-5)y=0.

    当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.

    故k=5或k=-1时原方程组有解.

    <x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有

    ,所以应舍去.

    7.由|x-y|=2得

    x-y=2,或x-y=-2,

    所以

    由前一个方程组得

    |2+y|+|y|=4.

    当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.

    同理,可由后一个方程组解得

    所以解为

    解①得x≤-3;解②得

    -3<x<-2或0<x≤1;

    解③得x>1.

    所以原不等式解为x<-2或x>0.9.令a=99991111,则

    于是

    显然有a>1,所以A-B>0,即A>B.

    10.由已知可解出y和z

    因为y,z为非负实数,所以有

    u=3x-2y+4z

    11.

    所以商式为x2-3x+3,余式为2x-4.

    S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,

    所以 S△EFGD=3S△BFD.

    设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以

    S△CEG=S△BCEE,

    从而

    所以

    SEFDC=3x+2x=5x,

    所以

    S△BFD∶SEFDC=1∶5.

    由已知AC‖KL,所以S△ACK=S△ACL,所以

    即 KF=FL.

    +b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!

    20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

    21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

    22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有

    (α+1)(β+1)(γ+1)=75.

    于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时

    (α+1)(β+1)=25.

    所以

    故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52

    23.设凳子有x只,椅子有y只,由题意得

    3x+4y+2(x+y)=43,

    即 5x+6y=43.

    所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.

    24.原方程可化为

    7x-8y+2z=5.

    令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是

    而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是

    把t的表达式代到x,y的表达式中,得到原方程的全部整数解是

    25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有

    8×7×6×5×4×3×2×1=40320

    种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.

    (2)逐个考虑结对问题.

    与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有

    2×8×7×6×5×4×3×2×1=80640

    种不同情况.

    26.万位是5的有

    4×3×2×1=24(个).

    万位是4的有

    4×3×2×1=24(个).

    万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:

    34215,34251,34512,34521.

    所以,总共有

    24+24+6+4=58

    个数大于34152.

    27.两车错过所走过的距离为两车长之总和,即

    92+84=176(米).

    设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有

    解之得

    解之得x=9(天),x+3=12(天).

    解之得x=16(海里/小时).

    经检验,x=16海里/小时为所求之原速.

    30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得

    解之得

    故甲车间超额完成税利

    乙车间超额完成税利

    所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).

    31.设甲乙两种商品的原单价分别为x元和y元,依题意可得

    由②有

    0.9x+1.2y=148.5, ③

    由①得x=150-y,代入③有

    0. 9(150-y)+1.2y=148. 5,

    解之得y=45(元),因而,x=105(元).

    32.设去年每把牙刷x元,依题意得

    2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,

    2×1.68+2×1.3+2×1.3x=5x+2.6,

    即 2.4x=2×1.68,

    所以 x=1.4(元).

    若y为去年每支牙膏价格,则y=1.4+1=2.4(元).

    33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则

    y=(4-x)(400+200x)

    =200(4-x)(2+x)

    =200(8+2x-x2)

    =-200(x2-2x+1)+200+1600

    =-200(x-1)2+1800.

    所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.

    34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以

    0.4(25+x)=0.6x,

    解之得x=50分钟.于是

    左边=0.4(25+50)=30(千米),

    右边= 0.6×50=30(千米),

    即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.

    35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有

    (2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.

    (3)新合金中,含锰重量为:

    x·40%+y·10%+z·50%=400-0.3x,

    而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.

    我知道很混乱,所以就当我是凑热闹的.希望有点帮助,可以从里面挑出来几题吧

    类似问题3:爸爸妈妈到商店买糖.如果用爸爸全部的钱可以买3千克奶糖和12千克水果糖.或者卖6千克奶糖和8千克水果糖.结果爸爸和妈妈用171元买了9千克奶糖和7千克水果糖.每千克水果糖多少元?[数学科目]

    假设每千克奶糖a元,每千克水果糖b元,则3a+12b=6a+8b,即3a=4b,a=4/3b,171=9a+7b=9*4/3b+7b=19b,b=9,即每千克水果糖9元

    类似问题4:明明的爸爸2008年存了年利率为百分之2点79的两年期存款,到期后扣除了百分之5的利息税,所得的钱刚好为明明买了一个价值150点03元的计算器,明明的爸爸存入银行多少元钱?[数学科目]

    分析:设明明的爸爸2008年存了x元,

    存款利息=存款金额×利率×存款时间×(1-5%),

    据此列方程计算即可.

    明明的爸爸前年存了x元,

    由题意得:150.03=x×2.79%×2×(1-5%),

    解之得:x=2830.22

    答:明明的爸爸前年存了2830.22元钱.

    类似问题5:三个质数的乘积恰好等于它们的和的7倍,求这三个质数[数学科目]

    设三个数为a,b,c

    因为abc=(a+b+c)*7

    所以a,b,c 中有一个为7

    现设a=7

    所以bc=7+b+c

    因为b,c都为整数且都为质数,故计算得b=3,c=5

  •   4
  • 相关文章

    专利代理人资格考试
    初级经济师考试
    执业医师考试
    教师资格证考试
    同等学力申硕考试
    AP考试
    CCIE考试
    营养师考试
    bec考试
    gre
Copyright ©2009-2021 逆火网训All Rights Reserved.     滇ICP备2023009294号-57