...)A.百日咳、白喉、乙肝B.百日咳、麻疹、破伤
编辑: admin 2017-23-02
-
4
类似问题
类似问题1:按克鲁斯卡尔算法得到最小生成树,写出最小生成树中依次得到的各条边已知一个图的顶点集V和边集E分别为:V={1,2,3,4,5,6,7}E={(1,2)3,(1,3)5,(1,4)8,(2,5)10,(2,3)6,(3,4)15,(3,5)12,(3,6
http://jpkc.nwu.edu.cn/sjjg/study_online/book/7/4_2.htm
(1,2) (4,6) (1,3) (1,4) (2,5) (4,7)
类似问题2:对图2所示的无向带权图,用普里姆算法或克鲁斯卡尔算法求其最小生成树[数学科目]
这是普里姆算法的.希望能帮到你!
类似问题3:如图所示为一个无向带权图,请分别按照Prim算法和Kruskal算法求最小生成树[数学科目]
按照prim是:(从起点到终点的边)
46,45,51,63,12,32
按照kruskal是:
46,15,45,63,12,32
类似问题4:最小生成树 普里姆算法和克鲁斯卡尔算法基本功能要求:①输入并存储至少8个顶点14条边的无向图.②分别编写普里姆算法和克鲁斯卡尔算法,求出最小生成树,输出最小生成树的生成过程.好
kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好!
克鲁斯卡尔算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林.之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之.依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止.
普里姆算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合.显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集.在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止.
1.Kruskal
#include
#include
#include
using namespace std;
struct node
{
int v1;
int v2;
int len;
}e[10000];//定义边集
int cmp(const void *a,const void *b)//快排比较函数
{
return ((node*)a)->len-((node*)b)->len;
}
int v[100],a[100][100];//v为点集
void makeset(int n)
{
for(int i=0;i
类似问题5:KRUSKAL算法和PRIM算法KRUSKAL算法在做的时候是不是就是直接写出PRIM算法的最后一步?那做KRUSKAL的时候也要像PRIM算法一样一步步写出来么
不是的,初学者要小心这两个的贪心.
kruskal算法的贪心是从源点到下一个点的距离最短.
prim算法的贪心是任意点到生成树的距离最短,也就是边的最小.
一定要小心呀.当年我错过很多次.