平面向量的所有公式-向量公式-数学学习资料

编辑: admin           2017-17-02         

    设a=(x,y),b=(x',y').

    1、向量的加法

    向量的加法满足平行四边形法则和三角形法则.

    AB+BC=AC.

    a+b=(x+x',y+y').

    a+0=0+a=a.

    向量加法的运算律:

    交换律:a+b=b+a;

    结合律:(a+b)+c=a+(b+c).

    2、向量的减法

    如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

    AB-AC=CB.即“共同起点,指向被减”

    a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

    4、数乘向量

    实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.

    当λ>0时,λa与a同方向;

    当λ<0时,λa与a反方向;

    当λ=0时,λa=0,方向任意.

    当a=0时,对于任意实数λ,都有λa=0.

    注:按定义知,如果λa=0,那么λ=0或a=0.

    实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

    当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

    当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.

    数与向量的乘法满足下面的运算律

    结合律:(λa)•b=λ(a•b)=(a•λb).

    向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

    数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

    数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.

    3、向量的的数量积

    定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

    定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.

    向量的数量积的坐标表示:a•b=x•x'+y•y'.

    向量的数量积的运算律

    a•b=b•a(交换律);

    (λa)•b=λ(a•b)(关于数乘法的结合律);

    (a+b)•c=a•c+b•c(分配律);

    向量的数量积的性质

    a•a=|a|的平方.

    a⊥b 〈=〉a•b=0.

    |a•b|≤|a|•|b|.

    向量的数量积与实数运算的主要不同点

    1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.

    2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.

    3、|a•b|≠|a|•|b|

    4、由 |a|=|b| ,推不出 a=b或a=-b.

    4、向量的向量积

    定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

    向量的向量积性质:

    ∣a×b∣是以a和b为边的平行四边形面积.

    a×a=0.

    a‖b〈=〉a×b=0.

    向量的向量积运算律

    a×b=-b×a;

    (λa)×b=λ(a×b)=a×(λb);

    (a+b)×c=a×c+b×c.

    注:向量没有除法,“向量AB/向量CD”是没有意义的.

    向量的三角形不等式

    1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

    ① 当且仅当a、b反向时,左边取等号;

    ② 当且仅当a、b同向时,右边取等号.

    2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.

    ① 当且仅当a、b同向时,左边取等号;

    ② 当且仅当a、b反向时,右边取等号.

    定比分点

    定比分点公式(向量P1P=λ•向量PP2)

    设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.

    若P1(x1,y1),P2(x2,y2),P(x,y),则有

    OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

    x=(x1+λx2)/(1+λ),

    y=(y1+λy2)/(1+λ).(定比分点坐标公式)

    我们把上面的式子叫做有向线段P1P2的定比分点公式

    三点共线定理

    若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

    三角形重心判断式

    在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

    [编辑本段]向量共线的重要条件

    若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.

    a//b的重要条件是 xy'-x'y=0.

    零向量0平行于任何向量.

    [编辑本段]向量垂直的充要条件

    a⊥b的充要条件是 a•b=0.

    a⊥b的充要条件是 xx'+yy'=0.

    零向量0垂直于任何向量.

    提示:

    这怎么可能呢,太多了,你还是到高一数学教材上找吧,上面全都有的

    类似问题

    类似问题1:平面向量公式|a|=2 |b|=1 ab夹角60° c=a-2b 求|a+c|=?[数学科目]

    a+c=a+a-2b=2(a-b)

    |a+c|^2=4|a-b|^2=4(a^2+b^2-2abcos60)=4*3=12

    |a+c|=2√3

    类似问题2:平面向量的公式金属a与b用导线连接起来浸入电解质溶液b不易腐蚀谁的金属活动性比较强为什么[化学科目]

    A的金属性大于B的金属性

    原电池的一个重要应用就是通过原电池池可以判断两种电极的金属性的强弱,

    B不容易被腐蚀说明B这种非金属不容易失去电子,而A比B易失去电子,失去电子能

    力越强的金属,金属性越强

    类似问题3:关于平面向量的所有公式[数学科目]

    设a=(x,y),b=(x',y').

    1、向量的加法

    向量的加法满足平行四边形法则和三角形法则.

    AB+BC=AC.

    a+b=(x+x',y+y').

    a+0=0+a=a.

    向量加法的运算律:

    交换律:a+b=b+a;

    结合律:(a+b)+c=a+(b+c).

    2、向量的减法

    如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

    AB-AC=CB.即“共同起点,指向被减”

    a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

    4、数乘向量

    实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.

    当λ>0时,λa与a同方向;

    当λ<0时,λa与a反方向;

    当λ=0时,λa=0,方向任意.

    当a=0时,对于任意实数λ,都有λa=0.

    注:按定义知,如果λa=0,那么λ=0或a=0.

    实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

    当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

    当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.

    数与向量的乘法满足下面的运算律

    结合律:(λa)•b=λ(a•b)=(a•λb).

    向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

    数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

    数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.

    3、向量的的数量积

    定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

    定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.

    向量的数量积的坐标表示:a•b=x•x'+y•y'.

    向量的数量积的运算律

    a•b=b•a(交换律);

    (λa)•b=λ(a•b)(关于数乘法的结合律);

    (a+b)•c=a•c+b•c(分配律);

    向量的数量积的性质

    a•a=|a|的平方.

    a⊥b 〈=〉a•b=0.

    |a•b|≤|a|•|b|.

    向量的数量积与实数运算的主要不同点

    1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.

    2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.

    3、|a•b|≠|a|•|b|

    4、由 |a|=|b| ,推不出 a=b或a=-b.

    4、向量的向量积

    定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

    向量的向量积性质:

    ∣a×b∣是以a和b为边的平行四边形面积.

    a×a=0.

    a‖b〈=〉a×b=0.

    向量的向量积运算律

    a×b=-b×a;

    (λa)×b=λ(a×b)=a×(λb);

    (a+b)×c=a×c+b×c.

    注:向量没有除法,“向量AB/向量CD”是没有意义的.

    向量的三角形不等式

    1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

    ① 当且仅当a、b反向时,左边取等号;

    ② 当且仅当a、b同向时,右边取等号.

    2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.

    ① 当且仅当a、b同向时,左边取等号;

    ② 当且仅当a、b反向时,右边取等号.

    定比分点

    定比分点公式(向量P1P=λ•向量PP2)

    设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.

    若P1(x1,y1),P2(x2,y2),P(x,y),则有

    OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

    x=(x1+λx2)/(1+λ),

    y=(y1+λy2)/(1+λ).(定比分点坐标公式)

    我们把上面的式子叫做有向线段P1P2的定比分点公式

    三点共线定理

    若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

    三角形重心判断式

    在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

    向量共线的重要条件

    若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.

    a//b的重要条件是 xy'-x'y=0.

    零向量0平行于任何向量.

    [编辑本段]向量垂直的充要条件

    a⊥b的充要条件是 a•b=0.

    a⊥b的充要条件是 xx'+yy'=0.

    零向量0垂直于任何向量.

    类似问题4:平面向量公式```求助~若向量a=(x,y) 向量b=(m,n) 1)a·b=xm+yn 2)a+b=(x+m,y+n) 如果求la+bl (求a+b的绝对值)应该怎样算?[数学科目]

    那个叫a+b的模.

    硬算啊,就是

    sqrt((x+m)^2+(y+n)^2)

    类似问题5:平面向量距离公式向量a(1,2)和向量b(2,3) 求向量AB的距离 有2条公式:一是向量b-a=(1,1) 二是:根号[(y1-x1)平方+(y2-x2)平方)]什么时候用哪条啊?我头都大了~明天测验了[数学科目]

    补充一下 一楼列出的是求向量AB长度的方程 又叫平面两点间的距离方程

    而LZ的是平面向量的坐标运算

    即LZ的是求向量,而一楼的是求距离

    你列出的b-a=(1,1)是该向量的坐标

    懂了么,本人不才 讲的有点抽象.

  •   4
  • 相关文章

    专利代理人资格考试
    初级经济师考试
    执业医师考试
    教师资格证考试
    同等学力申硕考试
    AP考试
    CCIE考试
    营养师考试
    bec考试
    gre
Copyright ©2009-2021 逆火网训All Rights Reserved.     滇ICP备2023009294号-57