有关描写梧州骑楼城的作文?-骑楼城-数学学习资料
编辑: admin 2017-23-02
-
4
一、 计算
1. 四则混合运算繁分数
⑴ 运算顺序
⑵ 分数、小数混合运算技巧
一般而言:
① 加减运算中,能化成有限小数的统一以小数形式;
② 乘除运算中,统一以分数形式.
⑶带分数与假分数的互化
⑷繁分数的化简
2. 简便计算
⑴凑整思想
⑵基准数思想
⑶裂项与拆分
⑷提取公因数
⑸商不变性质
⑹改变运算顺序
① 运算定律的综合运用
② 连减的性质
③ 连除的性质
④ 同级运算移项的性质
⑤ 增减括号的性质
⑥ 变式提取公因数
形如:
3. 估算
求某式的整数部分:扩缩法
4. 比较大小
① 通分
a. 通分母
b. 通分子
② 跟“中介”比
③ 利用倒数性质
若 ,则c>b>a..形如: ,则 .
5. 定义新运算
6. 特殊数列求和
运用相关公式:
①
②
③
④
⑤
⑥
⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、 数论
1. 奇偶性问题
奇 奇=偶 奇×奇=奇
奇 偶=奇 奇×偶=偶
偶 偶=偶 偶×偶=偶
2. 位值原则
形如: =100a+10b+c
3. 数的整除特征:
整除数 特 征
2 末尾是0、2、4、6、8
3 各数位上数字的和是3的倍数
5 末尾是0或5
9 各数位上数字的和是9的倍数
11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25 末两位数是4(或25)的倍数
8和125 末三位数是8(或125)的倍数
7、11、13 末三位数与前几位数的差是7(或11或13)的倍数
4. 整除性质
① 如果c|a、c|b,那么c|(a b).
② 如果bc|a,那么b|a,c|a.
③ 如果b|a,c|a,且(b,c)=1,那么bc|a.
④ 如果c|b,b|a,那么c|a.
⑤ a个连续自然数中必恰有一个数能被a整除.
5. 带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r
当r=0时,我们称a能被b整除.
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n= p1 × p2 ×...×pk
7. 约数个数与约数和定理
设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:
n的约数个数:d(n)=(a1+1)(a2+1).(ak+1)
n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同余定理
① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)
②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除.
③两数的和除以m的余数等于这两个数分别除以m的余数和.
④两数的差除以m的余数等于这两个数分别除以m的余数差.
⑤两数的积除以m的余数等于这两个数分别除以m的余数积.
9.完全平方数性质
①平方差: A -B =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性.
②约数:约数个数为奇数个的是完全平方数.
约数个数为3的是质数的平方.
③质因数分把数字分解,使他满足积是平方数.
④平方和.
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计
三、 几何图形
1. 平面图形
⑴多边形的内角和
N边形的内角和=(N-2)×180°
⑵等积变形(位移、割补)
① 三角形内等底等高的三角形
② 平行线内等底等高的三角形
③ 公共部分的传递性
④ 极值原理(变与不变)
⑶三角形面积与底的正比关系
S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4
⑷相似三角形性质(份数、比例)
① ; S1∶S2=a2∶A2
②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2
⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不变原理
知5-2=3,则圆点比方点多3.
⑺隐含条件的等价代换
例如弦图中长短边长的关系.
⑻组合图形的思考方法
① 化整为零
② 先补后去
③ 正反结合
2. 立体图形
⑴规则立体图形的表面积和体积公式
⑵不规则立体图形的表面积
整体观照法
⑶体积的等积变形
①水中浸放物体:V升水=V物
②测啤酒瓶容积:V=V空气+V水
⑷三视图与图
最短线路与图形状问题
⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系.
四、 典型应用题
1. 植树问题
①开放型与封闭型
②间隔与株数的关系
2. 方阵问题
外层边长数-2=内层边长数
(外层边长数-1)×4=外周长数
外层边长数2-中空边长数2=实面积数
3. 列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间
③车长甲+车长乙=速度差×追及时间
列车与人或骑车人或另一列车上的司机的相遇及追及问题
车长=速度和×相遇时间
车长=速度差×追及时间
4. 年龄问题
差不变原理
5. 鸡兔同笼
假设法的解题思想
6. 牛吃草问题
原有草量=(牛吃速度-草长速度)×时间
7. 平均数问题
8. 盈亏问题
分析差量关系
9. 和差问题
10. 和倍问题
11. 差倍问题
12. 逆推问题
还原法,从结果入手
13. 代换问题
列表消元法
等价条件代换
五、 行程问题
1. 相遇问题
路程和=速度和×相遇时间
2. 追及问题
路程差=速度差×追及时间
3. 流水行船
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4. 多次相遇
线型路程: 甲乙共行全程数=相遇次数×2-1
环型路程: 甲乙共行全程数=相遇次数
其中甲共行路程=单在单个全程所行路程×共行全程数
5. 环形跑道
6. 行程问题中正反比例关系的应用
路程一定,速度和时间成反比.
速度一定,路程和时间成正比.
时间一定,路程和速度成正比.
7. 钟面上的追及问题.
① 时针和分针成直线;
② 时针和分针成直角.
8. 结合分数、工程、和差问题的一些类型.
9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法.
六、 计数问题
1. 加法原理:分类枚举
2. 乘法原理:排列组合
3. 容斥原理:
① 总数量=A+B+C-(AB+AC+BC)+ABC
② 常用:总数量=A+B-AB
4. 抽屉原理:
至多至少问题
5. 握手问题
在图形计数中应用广泛
① 角、线段、三角形,
② 长方形、梯形、平行四边形
③ 正方形
七、 分数问题
1. 量率对应
2. 以不变量为“1”
3. 利润问题
4. 浓度问题
倒三角原理
例:
5. 工程问题
① 合作问题
② 水池进出水问题
6. 按比例分配
八、 方程解题
1. 等量关系
① 相关联量的表示法
例: 甲 + 乙 =100 甲÷乙=3
x 100-x 3x x
②解方程技巧
恒等变形
2. 二元一次方程组的求解
代入法、消元法
3. 不定方程的分析求解
以系数大者为试值角度
4. 不等方程的分析求解
九、 找规律
⑴周期性问题
① 年月日、星期几问题
② 余数的应用
⑵数列问题
① 等差数列
通项公式 an=a1+(n-1)d
求项数: n=
求和: S=
② 等比数列
求和: S=
③ 裴波那契数列
⑶策略问题
① 抢报30
② 放硬币
⑷最值问题
① 最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
② 最优化问题
a.统筹方法
b.烙饼问题
十、 算式谜
1. 填充型
2. 替代型
3. 填运算符号
4. 横式变竖式
5. 结合数论知识点
十一、 数阵问题
1. 相等和值问题
2. 数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3. 幻方
⑴奇阶幻方问题:
杨辉法 罗伯法
⑵偶阶幻方问题:
双偶阶:对称交换法
单偶阶:同心方阵法
十二、 二进制
1. 二进制计数法
① 二进制位值原则
② 二进制数与十进制数的互相转化
③ 二进制的运算
2. 其它进制(十六进制)
十三、 一笔画
1. 一笔画定理:
⑴一笔画图形中只能有0个或两个奇点;
⑵两个奇点进必须从一个奇点进,另一个奇点出;
2. 哈密尔顿圈与哈密尔顿链
3. 多笔画定理
笔画数=
十四、 逻辑推理
1. 等价条件的转换
2. 列表法
3. 对阵图
竞赛问题,涉及体育比赛常识
十五、 火柴棒问题
1. 移动火柴棒改变图形个数
2. 移动火柴棒改变算式,使之成立
十六、 智力问题
1. 突破思维定势
2. 某些特殊情境问题
十七、 解题方法
(结合杂题的处理)
1. 代换法
2. 消元法
3. 倒推法
4. 假设法
5. 反证法
6. 极值法
7. 设数法
8. 整体法
9. 画图法
10. 列表法
11. 排除法
12. 染色法
13. 构造法
14. 配对法
15. 列方程
⑴方程
⑵不定方程
⑶不等方程
提示:
把往年的考试题看看就基本知道题型了
类似问题
类似问题1:我考你道数学题两个仓库共有10000千克面粉.从每个仓库里取出同样多的面粉后,结果甲仓剩下4270千克面粉,乙仓剩下3450千克面粉,两个仓库里原来各有多少千克面粉?(写算式,格式错了不给分)
唔,我给的答案在下面:
(由题意知两个仓库一共拿出面粉质量为:)
10000-4270-3450
=5730-3450
=2280(千克)
(因为每个仓库里取出同样多的面粉、则每个仓库取出面粉质量为:)
2280÷2=1140(千克)
所以甲仓库中原来面粉质量为 1140+4270=5410(千克)
乙仓库中原来面粉质量为 1140+3450=4590(千克)
【这一步也可以用10000-5410=4590(千克)】
答:甲仓库中原来面粉有5410千克,乙仓库中原来有面粉4590千克.
括号里的内容可写可不写、考试中都会给分的,但是单位、解、答、必须要写,如果注重书写,等于号必须用尺子.(这是算式写法,如果你还需要方程方法的话,或者有什么疑惑,可以在线交谈或在我离线时离线留言)希望能帮助你.
类似问题2:李林在银行兑换了一张面额为100元以内的人民币支票,兑换员不小心将支票上的元与角、分数字看倒置了(例如,把12.34元看成34.12元),并按看错的数字支付.李林将其款花去3.50元之后,
设元为a,角分为b,则原来为(100a+b)分,被看错成(100b+a)分.
因此得到关系:100b+a-350=2?(100a+b),
整理得:98b-199a=350 49(2b-a)=350+150a=50(7+3a),因此2b-a是50的倍数,
设2b-a=50k,代入得到:7+3a=49k (后面用=表示同余符号)1=7=49k=k(mod3),
因此k=3n+1,由2b-a=50k,
又可得到,50k<200,k<4,因此k=1.
于是得到:a=14,b=32,
退回款额为:(100b+a)-(100a+b)=99(b-a)=99×18分=17.82元.
故答案为:17.82.
类似问题3:考试数学题,急!超市过去20天内销售量(件)与价格(元)均为时间t(天)的函数,销售满足g(t)=80-2t(件),价格满足f(t)=20-1/2|t-10|(元) 求:写出销售额y与时间t(0[数学科目]
y=g(t)*f(t)=(80-2t)*(20-1/2|t-10|)
当0
类似问题4:宝一中小升初经典奥数题,
.鬼知道宝一中小是哪省哪市的学校 - -
类似问题5:我怎么听说,子弟160分以上可以上重点班;外校的要180分以上才能上重点呀最好详细一点
是挺难的,我当年考的时候没有英语,满分180,但是重点线就是145.把奥数知识好好弄弄,大多数题和入学考试差不多.