anan+1-2an+1+1=0怎么变形得1(1-a
编辑: admin 2017-04-03
-
4
不加下标读起来好痛苦啊,试着做了下,应该这样没错.有问题在问我,希望可以采纳,真的好辛苦啊.注意:[ ]表示下标
An*A[n+1]-2A[n+1]+1=0
An*A[n+1]-A[n+1]-A[n+1]+1=0
(An-1)*A[n+1]-(A[n+1]-1)=0 除以(An-1)×(A[n+1]-1)
A(n+1)/(A[n+1]-1) - 1/(An-1) = 0 带入A[n+1]= A[n+1]-1+1
(A[n+1]-1+1)/(A[n+1]-1) - 1/(An-1) = 0
1+ 1/(A[n+1]-1) - 1/(An-1) = 0 1移到右边
1/(A[n+1]-1) - 1/(An-1) = -1 同时乘以-1
1/(1-A[n+1]) - 1/(1-An) = 1
类似问题
类似问题1:已知{an}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+anan+1=( )A. 16(1-4-n)B. 16(1-2-n)C. 323(1-4-n)D. 323(1-2-n)[数学科目]
由 a
1 |
4 |
a
2?q
3=2?q
3,解得q=1 |
2 |
数列{anan+1}仍是等比数列:其首项是a1a2=8,公比为
1 |
4 |
所以,
a
1a
2+a
2a
3+…+a
na
n+1=8[1- (
| ||
1-
|
32 |
3 |
4
-n)故选C.
类似问题2:An=3n-2,求数列{1/AnAn+1}的前n项和n和n+1是下脚标,应该都明白吧[数学科目]
考察一般项第k项:
1/[aka(k+1)]=1/[(3k-2)(3(k+1)-2)]=1/[(3k-2)(3k+1)]=(1/3)[1/(3k-2)-1/(3k+1)]
1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]
=(1/3)[1/1-1/4+1/4-1/7+...+1/(3n-2)-1/(3n+1)]
=(1/3)[1-1/(3n+1)]
=n/(3n+1)
类似问题3:已知数列{an}满足,anan+1=n(n-1)(an+1-an),且a1=0,a2=1.(1)求证:数列{an}是等差数列;(2)设bn=2 an-34,求数列{|bn|}的前n项和Sn.[数学科目]
(1)证明:∵a1=0,a2=1,依题意只需证明?n∈N*, a
an+1-an=a2-a1=1,…(1分)
∵anan+1=n(n-1)(an+1-an),
∴
n(n?1) a n |
n(n?1)? a n |
∴只需证
a
n+1?a
n=a n2 |
n(n?1)? a n |
即只需证
a
n2=n(n?1)?a
n,即只需证a
n2+a
n?n(n?1)=0,即只需证an=n-1或an=-n,…(5分)
∵an=-n不符合a2=1,∴只需证an=n-1.
数列{n-1}是等差数列,且满足a1=0,a2=1,以上各步都可逆
∴数列{an}是等差数列 …(7分)
(2)由(1)可知an=n-1,∴
b
n=2
n?1?34,…(8分)设数列{bn}的前n项和为Tn,
数列{2n-1}是首项为1,公比为2的等比数列,数列{34}是常数列
∴Tn=b1+b2+…+bn=
1? 2 n |
1?2 |
令
b
n=2
n?1?34>0,∴n>6,∵数列{bn}是递增数列∴数列{bn}前6项为负,以后各项为正 …(10分)
∴当n≤6时,Sn=-Tn=-2n+34n+1,…(11分)
当n>6时,Sn=Tn-2T6=2n-34n-283.…(12分)
∴
S
n=
|
类似问题4:已知数列{an}中,a1=1/2,an+1=2an/(an+2)(n属于N*) ,已知数列{an}中,a1=1/2,an+1=2an/(an+2)(n属于N*) ,(1)求a2,a3,a4(2)猜想an的表达式(3)用数学归纳法证明an的表达式.[数学科目]
(1) a2=2/5,a3=1/3,a4=2/7.(2) 猜想:an=2/(n+3) (3) ① 当n=1时,a1=2/(1+3)=1/2,等式成立.②假设当n=k时成立,即:ak=2/(k+3),则当n=k+1时,a(k+1)(说明:括号内为右下标)=2ak/(ak+2) =2*(2/k+3)/[2/(k+3)+...
类似问题5:已知数列{An}是等差数列,且A1=3,A2=5.D=2 求数列{AnAn+1/1}的前n项和我没分呀T 哥哥姐姐帮帮忙[数学科目]
an=2n+1
1/anan+1=1/(2n+1)(2n+3)=((1/(2n+1))-(1/(2n+3)))/2
所以前N项和为n/(6n+9)