...?pid=2177有两堆石子,数量任意,可以不
编辑: admin 2017-01-03
-
4
囧了,5和8, 5那堆不动,8那堆拿掉5个变成3, 就行了……
这个是三大博弈问题的Wythoff博弈,属于组合游戏里的基础问题,把Nimm博弈学好了才能学SG函数……
附Wythoff博弈
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,k大于1时,ak是未在前面出现过的最小自然数,而 bk= ak + k。
通项公式:
a=(sqrt(5)+1)/2 , b=a+1
则k1=(int) (a*n) , k2=(int)(b*n), n为自然数