求圆周率的历史故事越多故事越好,不过每个故事的字数.
编辑: admin 2017-01-03
-
4
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
类似问题
类似问题1:圆周率的小故事 圆周率的小故事山尖一寺一壶酒.[语文科目]
背景:"我"作为一个父亲,对于儿子的堕落,由自暴自弃到想法挽救,最后成功,和 家团圆.
方法:读音+形状.
白话+古文.
(儿子十分堕落)
山颠一寺一壶酒,3.14159
儿乐,苦煞吾.26 535
把酒吃,酒杀儿.897 932
杀不死,乐而乐.384 626
(父亲对儿子放弃希望)
死了算罢了,儿弃沟 43383 279
吾痛儿,白白死已够戚矣,留给山沟沟 502 8841971 69399(这句是我觉得最强的!)
(心疼儿子)
山拐吾腰痛,吾怕儿冻久,凄事久思思.37510 58209 74944
(接下来开始挽救儿子了.)
吾救儿,山洞拐,不宜留 592 307 816
四邻乐,儿不乐,儿疼爸久久 406 286 20899
爸乐儿不懂,"三思吧!" 86280 348
儿悟,三思而依矣,妻懂乐其久.25 34211 70679
一百位over.
类似问题2:圆周率是什么?有没有关于圆周率的故事?[数学科目]
即圆周长与圆直径的比值,关于圆周率的故事,:祖冲之比西方人早一千年就将圆周率精确到3.1415926到3.14159267
类似问题3:圆周率的故事急
3.141592653589793238462643383279
山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,遛尔遛死,扇扇刮,扇耳吃酒.
求算圆周率的值是数学中一个非常重要也是非常困难的研究课题.中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进.祖冲之是中国古代伟大的数学家和天文学家.祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率.
在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一.在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数.祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值.祖冲之究竟用什么方法得出这一结果,现在无从查考.如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!
祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”.除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算.他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的.为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”.
祖冲之在数学领域的成就,只是中国古代数学成就的一个方面.实际上,14世纪以前中国一直是世界上数学最为发达的国家之一.比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法.
求算圆周率的值是数学中一个非常重要也是非常困难的研究课题.中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进.祖冲之是中国古代伟大的数学家和天文学家.祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率.
在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一.在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数.祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值.祖冲之究竟用什么方法得出这一结果,现在无从查考.如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!
祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”.除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算.他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的.为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”.
祖冲之在数学领域的成就,只是中国古代数学成就的一个方面.实际上,14世纪以前中国一直是世界上数学最为发达的国家之一.比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法.
类似问题4:圆周率历史简介要短![数学科目]
约2000年前,中国的古代数学著作《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是它直径的3倍.
约1500年前,中国有一位伟大的数学家、天文家祖冲之,他计算出圆周率应在3.1415326和3.1415927之间,成为世界上第一个把圆周率的值精确到7位小数的人.他这项伟大成就比国外数学家得出这样精确数值的时间,至少要早1000年.现在人们用计算机算出的圆周率,小数点后面已经达到上亿位.
类似问题5:圆周率的历史[数学科目]
【圆周率的历史】
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数.历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 .第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值.
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形.
南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7.其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率.
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录.
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数.
1579年法国数学家韦达给出π的第一个解析表达式.
此后,无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加.1706年英国数学家梅钦计算π值突破100位小数大关.1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的.到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录.
电子计算机的出现使π值计算有了突飞猛进的发展.1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数.1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录.
除π的数值计算外,它的性质探讨也吸引了众多数学家.1761年瑞士数学家兰伯特第一个证明π是无理数.1794年法国数学家勒让德又证明了π2也是无理数.到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的「化圆为方」尺规作图问题.还有人对π的特征及与其它数字的联系进行研究.如1929年苏联数学家格尔丰德证明了eπ 是超越数等等.